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Thermal Expansion and Elastic Constants 1 

Hassel  Ledbetter 2 

We give a simple, useful relationship between thermal expansion, AV/V, and 
elastic constants. The relationship permits estimation of thermal expansion from 
only elastic constants (second order and third order) and atomic volume. 
Elastic-constant temperature dependence is not required. We test the rela- 
tionship for a variety of crystalline solids. Considering the 0-293 K region, 
measurement-calculation disagreement ranges from less than 1 to 15%. The 
model permits extrapolation of high-temperature (near-linear) thermal expan- 
sion to zero temperature. 
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expansivity; zero-point energy. 

1. I N T R O D U C T I O N  

This  s tudy  focuses  on  the  v o l u m e  c h a n g e  tha t  occurs  w h e n  a so l id ' s  

t e m p e r a t u r e  increases  f r o m  ze ro  to s o m e  t e m p e r a t u r e  n e a r  the  E ins te in  o r  

D e b y e  t e m p e r a t u r e :  

A V  V ( T ) -  V(0) 
(1) 

v v ( 0 )  

Usua l l y ,  one  ca lcu la tes  A V/V by i n t eg ra t i on :  

T 
A V / V =  fo f l ( T ) d T  (2 / 
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Here, fl denotes the usual volume thermal expansivity: 

fl( T) = (1/ F)( ~ V/~T) ,~ (3) 

The present study provides an alternative approach to estimating 
A V/V. It requires knowing C~ and Cok, the second-order and third-order 
elastic constants, but not their temperature dependences. It extends ideas 
given by Sheard [ 1 ]. 

2. T H E O R Y  

In discussing simple statistical-mechanical models of solids, Slater [2] 
gave an expression for the volume thermal expansivity: 

fl--- (k/BVo) ~ 7j(hvJkT) 2 e x p ( h v J k T ) / [ e x p ( h v J k T ) -  13 a 
J 

(4) 

Here k denotes Boltzmann's constant, h Planck's constant, B the bulk 
modulus, Vo the total volume of solid at zero temperature, v the vibrational 
frequency, and j the j th  oscillator ( j =  1 - 3N for a crystal containing N 
atoms), and 7j, the mode Griineisen parameter, is given by 

7j = - d l n  vJd ln  V (5) 

Following Einstein, we take all vj--v; following Griineisen, we take all 
7j = 7, where v and 7 represent average values. We introduce the Einstein 
characteristic temperature OE=hv/k and the atomic volume Va= Vo/N. 
Thus simplified, Eq. (4) becomes 

fl = (3kT/BV~)(OE/T) 2 exp(OE/T) / [exp(OE/T) -  1 ]z (6) 

Here, the sum over j in Eq. (4) is 3N. 
For simplicity, we ignore the small temperature dependences of 7, B, 

O, and V~. Integrating Eq. (6), we get 

A V/V(T) = (3kTOE/BVa)/[exp(OE/T) - 1 ] (7) 

Equations (6) and (7) contain four parameters: B, y, OE, and Va. 
Below, we describe how B depends only on the C0, 7 only on the C o and 
C0k, and O E only on the C o and Va. Thus, we can estimate both/~(T) and 
A V/V(T)  from the elastic constants and atomic volume. 

For simplicity, we also consider only cubic-symmetry materials, which 
possess three independent second-order elastic constants: Cll, C12, and 
C44. [-To extend the approach to noncubic symmetry would require more 
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general expressions for Eqs. (9), (14), and (15).] From the general expres- 
sion for the bulk modulus [3], 

we obtain 

B = ~ Z Ciuj (8) 
i,j= 1,2,3 

B =  + 2C12) (9) �89 

We can calculate the Einstein temperature, O E = (3/4) OD, where 69 0 
denotes Debye temperature, by first calculating the mean sound velocity Vm 
[4]: 

OE = (3/4)(h/k )(3/4rcVa) 1/3 u m (10) 

Here V a denotes atomic volume and Vm the mean sound velocity obtained 
by numerical integration over all directions: 

3Vm3=(1/47Z) f ~ v~3dsQ (11) 
c~= 1,3 

Here Vl denotes the quasilongitudinal sound velocity, v2 and v3 the quasi- 
transverse sound velocities, and dr2 the increment of solid angle. Phase 
sound velocities v~ are roots of the Christoffel equations: 

det( C ~iktnjnk --  Du2 0 il) = 0 (12) 

Here, p denotes mass density, ni components of unit wave vector, and 6it 
the Kronecker delta. As discussed by Blackman [4], various methods exist 
for solving Eq. (11), but direct numerical integration provides the simplest 
approach. We used seventy vectors distributed over 1/48 of space. 

We used the high-temperature limit of the thermodynamic Griineisen 
parameter [5 ]: 

1 3N 
= (13) )~FI ~ j = l  

To calculate the mode Grfineisen parameters, 7j, we used the following 
relationship [6, 7]: 

--(~---'~) + N 2 U 2 + N 3 U 3 )  + 2Cl12)(N1 U1 ])j= { 2 W + C l 1 + 2 C 1 2 + ( C l l l  2 2 2 2 2 2 

-}- (C144 -~- 2C166) [ (N  2 03 + N3 U2) 2 

+ (N3 U1 + N1 U3) 2 + (N1 U2 + N2 U1) 2] 

+ 2 ( C 1 2 3 + 2 C 1 1 2 ) ( N 2 N 3 U z U 3 + N 3 N 1 U 3 U l + N I N 2 U 1 U 2 ) }  (14) 

840/12/4-3 
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Here 
2 2 2 2 2 2 

= + N 2 U 2 + N 3 U 3 )  w Cl l (N  I U 1 

+ C44[(N2 U3 + N3 U2) 2 + (U3 U1 + Ul U3) 2 + (N1 U2 + U2 U1) 2 ] 

+ 2 c s 2 ( N z N 3  U 2 U 3 + N3N1U 3 U 1 -q- N I N  2 U 1 U2) (15) 

The vectors N and U refer to propagation and polarization vectors of the 
j th  normal mode. The elastic constants are expressed in Voigt's contracted 
notation. 

Table I shows the input information and the calculated 3 V/V results 
for nine materials: five metallic elements, a covalent element, a covalent 
compound, and two ionic compounds (valence 1 and valence 2). The 
calculation-measurement comparison shows differences ranging from 1 to 
15%. The smallest disagreements seem to occur in close-packed high- 
Einstein-temperature materials. 

For copper, Fig. 1 shows the curve predicted by Eq. (7) together with 
measured values [8]. We could achieve an exact (to the eye) fit by 
reducing OE from 248 to 243 K. The dashed line in Fig. 1 represents a 
linear extrapolation from high temperatures, where from Eq. (7) the slope 
equals 3kT/BVa. The intercept at T = 0  gives the zero-point vibration- 
induced volume increase: 

(A V/V)zp = 3kTOz/2BVa (16) 

We note that (A V/V)zp equals approximately the volume change caused by 
warming from 0 to 293 K. Indeed, for OE=293 K, a typical Einstein 
temperature, Eqs. (7) and (16) show that 

(A V/V)o_293/(z] V/V)z p = 1.16 (17) 

Table I. The 0-293 K Thermal Dilatation Predicted for Various Materials 

Material 

A V/V (%) Ratio 
B V a Oo O E theory: 

7 (1011 N . m  -2) (~3) (K) (K) Theory Observed observed 

AI 2.22 0.759 16.60 408 306 1.21 1.25 0.97 
Cu 2.03 1.353 11.81 330 248 0.98 0.98 1.00 
Ag 2.50 1.012 17.06 216 162 1.31 1.24 1.06 
Au 2.57 1.735 t6.96 155 116 0.86 0.98 0.88 
Fe 1.81 1.669 11.70 464 348 0.59 0.59 0.99 
Ge 0.76 0.754 22.64 371 278 0.32 0.28 1.13 
GaAs 0.65 0.755 22.50 345 259 0.29 0.27 1.06 
NaC1 1.46 0.252 22.41 303 227 2.26 2.32 0.97 
MgO 1.60 1.533 9.35 946 710 0.35 0.41 0.86 
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Fig. 1. For copper, a theoretical curve correspond- 
ing to Eq. (7). Open circles represent observed 
values recommended in Ref. 8. The dashed line 
represents linear extrapolation from high tem- 
peratures. Its intercept at T= 0 gives the zero-point 
energy contribution to volume. Lowering the OE 
from 248 to 243 K gives exact agreement between 
theory and measurement. 

Finally, we want  to emphasize the possibility of using Eq. (7) to 
extrapolate higher- temperature near-linear A V/V measurements  to zero 
temperature.  For  this purpose,  one needs good  estimates of B, 7, OE, and 
Va for the material considered. 

3. S U M M A R Y  

In summary,  we derived a simple four-parameter  relationship for 
A V/V(T). All four parameters  have simple physical meanings:  bulk 
modulus,  Einstein (or Debye)  temperature,  Grtineisen parameter,  and 
a tomic volume. This relationship permits easy unders tanding of  inter- 
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c o n n e c t i o n s  a m o n g  these var iab les  a n d  the t he rm a l  expans iv i ty ,  ~q(T). 

Especia l ly  for h i g h - D e b y e  t e m p e r a t u r e  c lose-packed  metals ,  the r e l a t ion-  
ship  predic ts  a A V / V  t ha t  agrees well wi th  obse rva t ion .  
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